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Flow of a stratified fluid in a wavy channel 
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The flow of a stratified fluid in a channel with small and large deformations is 
investigated. The analogy of this flow with swirling flow in tubes with non- 
uniform cross-sections is studied. The flow near the wall is blocked when the 
Froude number takes certain critical values. The possibility of preventing the 
stagnation zones in the flow field is also discussed. 

1. Introduction 
It has been observed that there exists an analogy between the flow of a stratified 

and a rotating fluid in many contexts. The important features of these flows are 
the blocking of the flow and the existence of internal waves for low Rossby and 
Froude numbers (Long 1953a, b; Trustrum 1964). Many such analogies have 
been discussed in great detail by Yih (1965). 

The aim of the present investigation is to study the analogy between the 
dynamics of rotating fluids and those of stratified fluids in presence of wavy 
boundaries. Chow (1969) has studied the swirling flow in tubes with non-uniform 
cross-sections; it was found that the flow near the wall is blocked if the Rossby 
number takes some critical values depending upon the zeros of the Bessel function 
J,(h). Further, for tubes with large periodic deformations, reversal of the flow 
was observed at  the cross-sections of maximum and minimum area. The reverse- 
flow regions shift from one cross-section to the other when the Rossby number 
crosses the critical values. Such a backflow was also observed experimentally 
by Gore & Ranz (1964). 

Recently Segur (1971) has examined the steady two-dimensional flow of a 
stratified fluid into an arbitrary contraction. The solution has been given when 
the strength of the contraction does not exceed a certain critical value depending 
on the Froude number. 

In  the work which follows, an attempt is made to understand the flow of' 
a stratified fluid in a channel with small sinusoidal and large periodic wall 
deformations. In  our analysis we take the governing nonlinear equations of 
motion, which reduce to a single equation for the stream function by choosing 
a suitable uniform upstream condition (Yih 1965). The solution for the stream 
function is obtained for two types of wall deformations, namely, (u) when the 
wall deformations are of out of phase and (b)  when the wall deformations are in 
phase. The nature of the flow in case (a )  is found to be analogous to the swirling 
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flow in a tube with non-uniform cross-section, while the flow in case ( b )  exhibits 
different features. 

Yih, O'Dell & Debler (1962) have explained the prevention of stagnation zones 
in the flow of a stratified fluid. This was achieved by introducing a structure near 
the sink, the form of which is obtained by making the mathematical singularity 
near the sink more complex. Is there any other approach for prevention of the stag- 
nation zones which can be used instead of introducing an artificial mathematical 
singularity near the sink? In order to answer this our analysis has been extended 
to include the flow in a channel with large periodic wall deformations. The re- 
versal of the flow and the separation zones are observed for small Froude numbers. 
We conclude that the stagnation zones in channel flow for small Froude numbers 
can be prevented by suitably deforming the walls of the channel. This appears 
to be a more natural way of preventing the stagnation zones than the method 
suggested by Yih et al. (1962). 

2. Flow field in a channel with small sinusoidal deformations 
Consider the steady two-dimensional flow of a non-homogeneous incom- 

pressible inviscid fluid in a channel with wavy walls. The co-ordinate axes x and 
y are chosen so that the undeformed walls are taken to be y = f d, where 2d is 
the distance between the walls. A transformation introduced by Yih (1965) is 
used to simplify the equations of motion. Writing 

u.' = (P/Po)~",  v' = (P/PO)+V, $' = S(P/PO)+d$, (1) 

where po is the reference density, u' and v' are the transformed velocities in the 
x and y directions and yY is the transformed stream function defined by 

ui = a y p y ,  v 1  = -a$yax, 

the differential equation for $-' is 
dp dH 
d$ d f '  

p0V2$' + gy 7 = - 

and g is the gravitational acceleration. 

is constant. Thus far upstream we have 
The upstream density variation is taken to be linear and the upstream velocity 

ul_, = uo = constant, p-, = po( I  -py), (4) 

where p = (po-p1)/2d, po is the reference density, which is the density at the 
bottom of the channel (y = - d ) ,  and p1 is the density a t  y = d. Hence we get 
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and (2) becomes 

The solution of (6) is investigated for two types of sinusoidal wall deformations. 
(a) When the wall deformations are out of phase, the boundaries are 

where a is the amplitude and Ic' is the wavenumber of the sinusoidal deformation. 
( b )  When the wall deformations are in phase, the boundaries are 

y = d+acosk'x and y = -d+acosk'x. 

Following Chow (1969), the condition that the flow is tangent to the wall 
becomes approximately 

when ald < 1. 
Now, introducing the non-dimensional variables in the form 

(8) 
u = u'/uo, v = v'luo, Y = qY/uod, 

g = Xld, 7 = yp, k' = k /d ,  

equation (6) can be written as 

(9) 
a 2 y  a v  
a p  a72 
- +-+ F-2Y = F-27, 

where P = u,/d(gp)$ is the Froude number of the flow. The non-dimensional 
form of the boundary conditions in case (a) is given by 

and in case ( b )  by 

Taking the solution of (9) in the form 

the differential equation for f (7) becomes 

dY/dV2+ (F-2- k2)  f = 0. (13) 

Equation (13) gives three possible solutions depending on the magnitude'of 
(P2-  k2).  The solutions for the stream function and the axial velocity satisfying 
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the boundary conditions in case (a) are given by 

A .  R. Rao and R. Deva,nathan 

when F - 2  = k2, 

a 
d 

a 
d 

Y = 7 - - 7 c o s k t ,  

u = 1--cosk<, 

(18) 
when F-2 < k2 I (19) 

a sinh (k2 - F2)& 7 
d sinh (k2  - F-2)* 

a (k2  - 
d sinh ( k 2  - 

y = 7 - -  cos k6, 

cosh (k2  - F2)& 7 u =  I-- cos kc, 

and in the case ( b )  by 

when P-2 = k2, 

a 
d 

a 
d 

YP = 7+-r /cosk l ,  

u = l + - c o s k ~ ,  

(24) 

( 2 5 )  

when F-2 < k2. 

a cosh (k2  - F-2)* 7 
d cosh (k2 -  F-2)4 

a ( k 2  - F-2)i sinh (k2  - F-2): 7 
d cosh ( k2 - 

Y = 7 + -  cos k<, 

u = 1 + -  cos k<, 

It is evident that the results (14) and (15) are not valid when the parameter 
(F-2-  k2)6 takes the values nn (n = I, 2,3,  . . .), similarly, the results (20) and (21) 
are not valid when this parameter takes the values $(an+ 1)n (n = 0, 1,2,  ...). 
Thus there exist infinitely many critical Froude numbers 

Pw = (n2++k2)-+ (n = 1,2 ,  ...) for case (a), (26) 

$T = [&(2n+ 1)2n2+k2]-+ (n = 0,  1, ...) for case ( b ) ;  (27) 

at these critical values of the Froude numbers no solution of (6) can be found to 
satisfy the boundary condition ( 7 ) .  The physical explanation of this situation is 
that the fluid cannot go round the bumps in the wall steadily and forms a stagnant 
region there. This is called the phenomenon of blocking and occurs in the flow 
of stratified fluids discussed in detail by Yih (1965) and others (see Segur 1971; 
Drazin 1961; Debler 1959). 
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FIGURE 1. Axial velocity across k t  = n for small Froude numbers with 
k = 3 and a/d = 0.1. -, case (a) ,  ---, case (b ) .  
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FIGURE 2. Axial velocity across k t  = n for very small Froude numbers with 
k = 3 and a/d = 0-02. (a )  Case (a). ( b )  Case ( b ) .  

The axial velocity at the cross-section k< = 7r is shown in figures 1 and 2 for 
different Froude numbers. It is seen from figure 1 that for case (a) decreasing 
the Froude number accelerates the flow in the mid-plane and decelerates the 
flow near the boundary. On the other hand, when the Froude number passes 
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FIGURE 3. Streamlines and axial velocity profiles for case (i). (a )  8 - 2  = 48, k = 3 and 
c1 = 0.166. (a) P2 = 64, k = 3 and c1 = 0.280. 

the first critical value, as given in (26), the flow decelerates in the mid-plane, 
accelerates in the outer region and decelerates near the boundary (figure 2). 
Similarly, when the Froude number passes the higher critical values some changes 
in the flow will again take place. 

In case ( b ) ,  the flow in the mid-plane is neither accelerated nor decelerated 
but remains uniform for all Froude numbers, except for P2 = 9, when the flow 
is uniform throughout. It is observed that the flow always decelerates near the 
boundary, while in the outer region it is accelerated for some Froude numbers 
and decelerated for other Froude numbers. For very small Froude numbers the 
flow in the outer region is quite complicated. 

3. Flow field in a channel with large periodic wall deformations 
For large periodic wall deformations the shape of the wall is not specified 

a priori. Using the two exact solutions derived in 3 2 one can study the behaviour 
of the stratified flow in channels with large periodic wall deformations by an 
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FIGURE 4. Streamlines and axial velocity profiles for case (ii). ( a )  F-2 = 34, 
ii = 3 and c2 = 0.474, ( b )  = 81, k =  3 and c2 = -0.470. 

inverse method. Consider 

(i) Y = 7 + c1 sin (F-2 - k2)* 7 cos kl, 
(ii) 'P = 7 + c2 cos (F-2 - k2)4 7 GOS Lc, 

(28) 

(29) 

which are exact solutions of (9). The shape of the boundary is controlled by the 
arbitrary constants c1 and c2, which need not be very small. The streamlines and 
the axial velocity profiles are represented graphically in the region n- < k[ 6 277 
for cases (i) and (ii) by determining the arbitrary constants c1 and c2 such that 
Y = 1 and 7 = 0.9 when kg = n-. 

The streamlines and the axial velocity profiles for case (i) are shown in figure 3. 
Even for moderately small Froude numbers, reversed flow exists at both the 
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FIGURE 5. Streamlines at F-2 = 64 with k = 3 and c, = - 0.108 for case (ii). 

cross-sections of maximum and minimum area. These Froude numbers are 
chosen to lie in between the second and third critical values. It is seen from the 
figures that the nature of the axial velocity in the central plane changes as the 
Froude number crosses the critical values. However, for slight differences, the 
general structure of this separated flow region is analogous to the swirling flow 
in tubes with non-uniform cross-sections (Chow 1969). 

Figure 4 depicts the streamlines and the axial velocity profiles for case (ii). 
Here also the backflow regions are observed at both the cross-sections of 
maximum and minimum area. The flow pattern becomes quite complicated in 
structure for very small Froude numbers as shown in figure 4 (b ) .  Another striking 
feature which we notice from our calculations is that even for the same small 
Froude number no reversed flow takes place for case (i). The reason for this type 
of behaviour is that the critical Froude numbers are different for cases (i) and (ii). 

By analysing the streamline patterns and axial velocity profiles for various 
Froude numbers for cases (i) and (ii), it is concluded that the separation-flow 
regions which occur in one case for a particular Froude number can be prevented 
in the other case. In other words, the stagnation zones in channel flow for very 
small Froude numbers can be prevented by suitably deforming the walls of 
the channel. As an example, figure 3 ( b )  (case (i)) shows the presence of separated- 
flow regions for F2 = 64, while figure 5 (case (ii)) shows that there is no reversed 
flow for the same Froude number. However, these theoretical predictions are 
yet to be supported by experiments. 
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